Use of procalcitonin assay to streamline antibiotic usage

Dr Kristine Luk

Outline

- Procalcitonin physiology & kinetics
- Limitations
- Different settings
 - primary care & AED
 - critically ill patients
 - neutropenic febrile patients
 - autoimmune diseases
 - neonates
- Local experience

Procalcitonin – kinetics

- 116 amino acid precursor polypeptide of calcitonin
- Half-life 24 hrs, independent of renal function
- Calcitonin level would not increase as enzymatic cleavage of calcitonin is bypassed.
- Greater sensitivity & NPV than CRP

Physiology

- In animal models of sepsis, PCT administration increased mortality
- Expression in WBCs is only increased transiently during the differentiation from monocytes to macrophages
- Neutropenic bacteremic patients have no deficiency in generating a PCT response

Müller B. et al., JCEM 200

Tissue that Secrete Procalcitonin

 In healthy person, only thyroid and lung secrete procalcitonin and then processed into calcitonin

 During bacterial infection, all parenchymal tissues could secrete procalcitonin into blood stream

Control

Sepsi

Limitations: Non bacterial causes of increased in PCT

Neuroendocrine tumor	Systemic inflam- mation	Trauma (2-20 ųg/L)	Autoimmune diseases	Other infections
Medullary thyroid cancer	Inhalational injury	Mechanical injury	Adult onset Still's disease	Fungi (0.69 – 103 ųg/L)
SCC lung	Pulmonary aspiration	Burns	Vasculitis?	Malaria (662 ųg/L)
Carcinoid	Pancreatitis	Extensive surgery	SLE?	
	cirrhosis	Cardiogenic shock		
	Mesenteric infarction			
	Heat stroke			
	Neonate < 48hs			

Limitations: Intracellular bacteria?

Journal of Infection (2006) 52, 169-177

Figure 1 Procalcitonin serum concentrations (ng/ml) in adults with pneumococcal pneumonia, Legionella pneumonia, tuberculosis and Pneumocystis jirovecii pneumonia.

 75 patients presented with PTB, only 41.3% have a PCT value > 0.5 ųg/L (range 0.02-1.09 ųg/L)

Primary care / AED patients

Table 2. Overview of Design and Content of the RCTs Grouped by Study Setting							
Source	Study Design ^a	Diagnosis	Research Question	Algorithm by PCT Level, µg/L	Outcome		
			Prin	nary Care Setting			
Briel et al, ¹⁴ 2008	Multicenter, noninferiority	Upper and Iower RTI	Safety and reduction of Abx with repeated PCT-level measurement?	<0.10, SRAA; 0.10-0.25, RAA; 0.25, RFA; recheck PCT level at 6-24 h if ho Aby initiated	Primary: days with restricted activity in first 14 d Secondary: Abx exposure, adverse events at day 28		
Burkhardt et al, ²¹ 2010	Multicenter, noninferiority	Upper and lower RTI	Safety and reduction of Abx with single PCT-level measurement?	<0.25, RAA >0.25, RFA	Primary: days with significant health impairment at day 14 Secondary: Abx exposure		
				ED Settings			
Christ-Crain et al, ²² 2004	ED only, single center	CAP, AECOPD, bronchitis	Reduction of Abx for lower RTI with repeated CAP in ED with single PCT-level measurement?	<0.10, SRAA; 0.10-0.25, RAA; 0.25-0.50, RFA; >0.50, SRFA; recheck PCT level after 6-24 h if no Ab x initiated	Primary: Abx prescriptions at day 14 Secondary: readmission, relapse, QOL, cost		
Christ-Crain et al, ²³ 2006	ED and inpatient, single center	CAP	Reduction of Abx for CAP with repeated PCT-level measurements?	<0.10, SRAA; 0.10-0.25, RAA; 0.25-0.50, RAA; >0.50, SRFA; recheck PCT revel every 2 d; discontinue Abx with same cutoffs	Primary: duration of Abx at day 28 Secondary: mortality, adverse outcomes		
Stolz et al, ²⁴ 2007	ED and inpatient, single center	AECOPD	Reduction of Abx for AECOPD with repeated PCT-level measurements?	<0.10, SRAA; 0.10-0.25, RAA; 0.25-0.50, RFA; >0.50, SRFA; retest PCT lever every 2 d; discontinue Abx with same cutoffs	Primary: Abx use in hospital and first 6 mo Secondary: ICU, death, LOS, AECOPD recurrence rate		
Long et al, ²⁵ 2009	ED at 2 centers	CAP	Reduction of Abx for CAP in outpatients with repeated PCT-level measurements?	<0.25, RAA ≥0.25, RFA; f no Abx, retest PCT at 8-12 h, recheck PCT every 3 d; discontinue Abx with come outoffs	Primary: Abx use within 28 d Secondary: clinical recovery, treatment failure, cost of Abx		
Kristoffersen et al, ²⁶ 2009	ED and inpatient, single center	Lower RTI	Reduction of Abx for lower RTI with single PCT-level measurement?	<0.25, RAA 0.25-0.50, RFA; 30.50, SRFA	Primary: Abx use Secondary: adherence to algorithm, mortality, ICU		
Schuetz et al,15 2009	ED and inpatient, multicenter	CAP, AECOPD, bronchitis	Safety, Abx use, and feasibility in CAP, AECOPD, and bronchitis?	<0.10, SRAA; 0.10-0.25, RAA; 0.25-0.50, RFA; >0.50, SRFA; retest PCT level every 2 d; discontinue Abx with same cutoffs	Primary: noninferiority of adverse outcomes at day 28 Secondary: duration of Abx		

ARCH INTERN MED/VOL 171 (NO. 15), AUG 8/22, 2011

Therapy decisions – start / withhold antibiotics

Table 3. Primary and Secondary Outcomes of the Different RCTs, Grouped by Study Setting

Source	Diagnoses	Total No.	Mortality, Control vs PCT Groups, No. Dead/Total (%)	Abx Use, Control vs PCT	Relative Reduction, %	Key Findings
				Primary Care Settings		
Briel et al,14 2008ª	Upper and lower RTI	458	1/226 (0.4) vs 0/232 (0)	Prescription: 97% vs 25% Duration (mean): 7.1 vs 6.2 d	Prescription: –74 Duration: –13	Reduction of Abx without additional days of restricted activity
Burkhardt et al,²¹ 2010	Upper and lower RTI	550	0/275 (0) vs 0/275 (0)	Prescription: 36.7% vs 21.5% Duration (mean): 7.7 vs 7.8 d	Prescription: -42 Duration: 1	Reduction of Abx without causing heath impairment
				ED Settinas		
Christ-Crain et al. ²² 2004	CAP, AECOPD, bronchitis	243	4/119 (3.4) vs 4/124 (3.2)	Prescription: 83% vs 44% Duration (mean): 12.8 vs 10.9 d	Prescription: -47 Duration: -15	Reduction of Abx prescriptions
Christ-Crain et al, ²³ 2006	CAP	302	20/151 (13.2) vs 18/151 (11.9)	Prescription: 99% vs 85% Duration (mean): 12.9 vs 5.8 d	Prescription: –14 Duration: –55	Reduction of initiation and duration of Abx without adverse outcomes
Stolz et al,²⁴ 2007	AECOPD	208	9/106 (8.5) vs 5/102 (4.9)	Prescription: 72% vs 40%	Prescription: -44	Reduced Abx exposure without adverse outcome
Long et al,25 2009	CAP	127	0/64 (0) vs 0/63 (0)	Prescription: 97% vs 86% Duration (median): 10 vs 6 d	Prescription: -11 Duration: -40	Reduction of Abx use and shorter Abx duration
Kristoffersen et al,≈ 2009	Lower RTI	210	1/107 (0.9) vs 2/103 (1.9)	Prescription: 79% vs 85% Duration (mean): 6.8 vs 5.1 d	Prescription: 8 Duration: –25	Reduction of duration of Abx use
Schuetz et al,15 2009	CAP, AECOPD, bronchitis	1359	33/688 (4.8) vs 34/671 (5.1)	Prescription: 87.7% vs 75.4% Duration (median): 8.7 vs 5.7 d	Prescription: -14 Duration: -34	Noninferiority or clinical outcomes and decreased Abx use

	PCT Algo	orithm	No PCT A	lgorithm		Fixed Data OD	Data Fixed OD
Study or Subgroup	Events	Total	Events	Total	Weight, %	(95% CI)	(95% CI)
1.1.1 Primary care trials	Mortality						
Briel et al, ¹⁴ 2008	0	232	1	226	0.3	0.13 (0-6.64)	← ─ ─
Burkhardt et al. ²¹ 2010	0	275	0	275		Not estimable	
Subtotal		507		501	0.3	0.13 (0-6.64)	
Total No. of events	0		1				
Heterogeneity: not applicable	8						
Test for overall effect: $z = 1.0$)1; P=.31						
1.1.2 Emergency department tri	als						
Christ-Crain et al, ²² 2004	4	124	4	119	2.6	0.96 (0.23-3.91)	!
Christ-Crain et al, ²³ 2006	18	151	20	151	11.2	0.89 (0.45-1.75)	
Stolz et al, ²⁴ 2007	5	102	9	106	4.4	0.57 (0.19-1.67)	
Kristoffersen et al, ²⁶ 2009	2	103	1	107	1.0	2.04 (0.21-19.81)	
Schuetz et al. ¹⁵ 2009	34	671	33	688	21.4	1.06 (0.65-1.73)	
Long et al, ²⁵ 2009	0	63	0	64		Not estimable	l l
Subtotal		1214		1235	40.6	0.95 (0.67-1.36)	
Total No. of events	63		67				0.01 0.10 1.00 10.00 100.00
Heterogeneity: $\chi_A^2 = 1.54$; P =	=.82; / ² =0%						Favors PCI Favors No PCT
Test for overall effect: $z = 0.2$	27; P=.78						Algonum Algonum

Proposed algorithm for low-acuity non-pneumonic and moderate-acuity pneumonic infections

Α

Evaluation at time of admission

PCT result	<0.10 µg/L	<0.25 µg/L	≥0.25 µg/L	>0.50 µg/L
Recommendation regarding use of Abx	Strongly discouraged	Discouraged	Encouraged	Strongly encouraged
Overruling the algorithm	Consider use of antib unstable, have strong are at high risk (ie, C or need hospitalizatio	biotics if patients are clinic gevidence of pneumonia, OPD GOLD III-IV), on	aly	
Follow-up/other comments	Follow-up only neede resolution after 1 to 2 situation is not impro if PCT level increases	əd if nosymptom 2 days; if clinical oving; considər Abx s to ≥ 0.25 µg/L	Clinical reevaluati	ion as appropriate

В

Evaluation at time of admission

PCT result	< 0.10 µg/L	<0.25 µg/L	≥0.25 µg/L	>0.50 µg/L
Recommendation regarding use of Abx	Strongly Discouraged discouraged		Encouraged	Strongly encouraged
Overruling the algorithm	Consider alternative diagn if patients are clinically un are at high risk for advers (eg, PSI classes IV-V, imm or have strong evidence of	osis, or Abx istable, e outcome nunosupression), f a bacterial pathogen		
Follow-up/other comments	Reassese patients' conditi PCT invel after 6 to 12 hou improvement is observed	ion and recheck urs if no clinical	Recheck PCT level every consider early cessation	y 2 to 3 days to n of Abx
Follow-up evaluation ev	very 2 to 3 days			
PCT result	<0.10 µg/L	<0.25 µg/L	≥0.25 µg/L	>0.50 µg/L
Recommendation regarding use of Abx	Cessation of therapy strongly encouraged	Cessation of therapy encouraged	Cessation of therapy discouraged	Cessation of therapy strongly discouraged
Overruling the algorithm	Consider continuation of <i>i</i> are clinically not stable	Abx if patients		
Follow-up/other comments	Clinical reevaluation as ap	propriate	Consider treatment to have level does not decrease a	ve failed if PCT dequately

Critically ill patients

- Pooled 1602 SIRS patients
- Unlikely to be helpful in assisting clinical decision (with a pretest probability of sepsis of 40%, PCT would only raise the post-test probability to 66%)
- NLR 0.43 (reduce the post-test probability to 23%, not enough to rule out an infection)

Figure 2: Diagnostic odds ratios of group 1 studies

Circles represent individual studies. Error bars represent 95% Cls. Diamond represents pooled diagnostic odds ratio, with dashed lines representing its 95% Cl. Size of circles is proportional toweighting by inverse variance. SE-standard error.

VAP?

Reference	Number	of Subjects	Cut-off	Sensitivity	Specificity
	VAP	No VAP	(ng/mL)	(%)	(%)
Duflo et al, 2002 ²²	44	52	3.9	41	100
Ramirez et al, 2008 ²⁶	9	11	2.99	78	97
Luyt et al, 2008 ²³	32	41	2	41	61
Charles et al, 2009 ²⁴	47	23	0.44	65	83
Jung et al, 2010 ²⁵	48	38	0.5	54	39

Table 1 Studies Evaluating Procalcitonin Concentration as a Diagnostic Marker of Ventilator-Associated Pneumonia

VAP, ventilator-associated pneumonia.

- Incorporating into a clinical score (e.g. CPIS) did not improve its diagnostic value
- 89.6% receive antibiotics at inclusion and 65% received antibiotics despite PCT < 0.5 ng/mL (PRORATA trial)
- Kinetics might be useful

Figure 1 Number of antibiotic-free days alive on day 28 for patients with ventilator-associated pneumonia included in the PRORATA trial³⁰ or the ProVAP trial,³⁴ managed according to a procalcitonin algorithm (black bars) or a conventional control strategy (white bars).

Therapy decision – shorten antibiotics duration

			ICU an	d Inpatient Settings ¹	
Svoboda et al,27 2007	ICU, single center	Postop septic shock	Improvement of outcomes after multiple traumas or maior surgerv?	>2.00, change in use of Abx and catheters; <2.00, ultrasonography and CT, followed by surgery	Primary: ICU LOS, ICU mortality rate, SOFA score, days using ventilator
Nobre et al,28 2008	ICU, single center	Sepsis	Reduction of Abx in ICU patients with sepsis?	Discontinue Abx on day 5 when <0.25 r decrease of ≥90% rom peak occurs	Primary: duration of Abx Secondary: mortality rate and LOS at day 28
Stolz et al,29 2009	European and US ICU, multicenter	VAP	Reduction of Abx in VAP in different ICUs?	<0.25, discontinue Abx; <0.50 o decrease or <00%, consider discontinuing Abx; >0.50 or decreased <80%, continue Abx; >1, continue Abx	Primary: Abx-free days alive
Hochreiter et al, ³⁰ 2009	ICU, single center	Postop with infection	Reduction of Abx in postop ICU patients with infection?	Discontinue Abx if clinically improvement observed and <1.00 or if decrease to 25%-35% or initial value for 3 d observed	Primary: Abx use Secondary: LOS
Schroeder et al, ³¹ 2009	ICU, single center	Postop with severe sepsis	Reduction of Abx duration in severe sepsis in postop ICU patients?	Discontinue Abx if decrease to < 1.00 or decrease by 25%-35% for 3 d observed	Primary: Abx use Secondary: LOS, mortality rate
Bouadma et al, ^{sz} 2010	ICU, multicenter	Sepsis	Safety and reduction of Abx in ICU patients with sepsis?	<0.25, SRAA; 1.25-0.50, RAA; >0.50-1.00, RFA; >1.00, SRFA; retest PCT level in 6-12 h if Abx not initiated, discentinue Abx when <0.50 or decrease >80%	Primary: mortality rate at days 28 and 60, Abx use at day 28

from peak level observed

Therapy decision – shorten antibiotics duration

				Inpatie	ent and ICU Settings					
Svoboda et al,27 2007	Postop septic shock	72	13/34 (38.2) vs 10/38 (26.3)		NA	NA	Trend to decrease in SOFA ventilator/ICU days	and		
Nobre et al,28 2008	Sepsis	79	12/40 (30.0) vs 8/39 (20.5)	Duration (med	lian): 9.5 vs 6.0 d	Duration: -37	Reduction in Abx duration LOS without adverse ex	and ICU /ents		
Stolz et al,29 2009	VAP	101	12/50 (24.0) vs 8/51 (15.7)	Abx-free days Duration (med	alive: 9.5 vs 13 ian): 15 vs 10 d	Abx-free days alive: 27 Duration: -33	Decreased Abx use withou increasing mortality rat	rt e		
Hochreiter et al, ³⁰ 2009	Postop patients with infection	110	14/53 (26.4) vs 15/57 (26.3)	Duration (mea	n): 7.9 vs 5.9 d	Duration: –25	Reduction in Abx duration LOS without adverse ev	and ICU rents		
Schroeder et al, ³¹ 2009	Postop severe sepsis	27	3/13 (23.1) vs 3/14 (21.4)	Duration (mea	n): 8.3 vs 6.6 d	Duration: -20	Shorter Abx duration			
Bouadma et al, ³² 2010 ^b	Sepsis	621	64/314 (20.4) vs 65/307 (21.2)	Abx-free days Duration (mea	alive: 11.6 vs 14.3 n): 9.9 vs 6.6 d	Abx-free days alive: 19 Duration: –33	Reduction in Abx use with increase in mortality rat	out je		
Intensive care u	nit trials									
Svoboda et al.27;	2007	10	38	13	34	5.3	0.58 (0.22-1.56)			
Nobre et al, ²⁸ 200)8	8	39	12	40	5.1	0.61 (0.22-1.67)			
Hochreiter et al. ³	° 2009	15	57	14	53	7.2	0.99 (0.43-2.32)		-	
Stolz et al.29 2000	9	8	51	12	50	5.4	0.60 (0.22-1.58)			
Schroeder et al, ³	12009	3	14	3	13	1.6	0.91 (0.15-5.42)	<u> </u>		
Bouadma et al. ³²	2010	65	307	64	314	34.4	1.05 (0.71-1.55)			
Subtotal			506		504	59.1	0.89 (0.66-1.20)	+		
Total No. of even:	19	109		118						
Heterogeneity: Χ	= 2.67; P=.75; I ²	2=0%								
Test for overall ef	fect: z = 0.76; P = .	45								
Total			2227		2240	100.0	0.91 (0.73-1.14)	+		
Total No. of event	8	172		186						
Heterogeneity: χ_{i}	² = 5.22; <i>P</i> = .92; <i>I</i>	2 = 0%								
Test for overall ef	fect: z = 0.81; P = .	.42								
Test for subgroup	p differences: χ^2_2 = 1	1.01; <i>P</i> = .	60; / ² = 0%							
	-								40.00	400.0
							0.01	0.10 1.00	10.00	100.00
							F	avors PCT I Algorithm	Favors No P Algorithm	'CT 1

Proposed algorithm for high-acuity infections in ICU settings

С

Evaluation at time of a	dmission			
PCT result	< 0.25 µg/L	<0.50 µg/L	≥0.50 µg/L	>1.0 µg/L
Recommendation regarding use of Abx	Strongly discouraged	Discouraged	Encouraged	Strongly encouraged
Overruling the algorithm	Empirical the	rapy recommended in all pa	tients with clinical suspic	ion of infection
Follow-up/other comments	Consider alternative patients condition an every 2 days	diagnosis; reassess d recheck PCT level	Reassess patients' PCT level every 2 d cessation of Abx	condition and recheck lays to consider
Follow-up evaluation (every 1 to 2 days			
PCT result	< 0.25 µg/L or drop by >90%	<0.50 µg/L or drop by >80%	≥0.50 µg/L	>1.0 µg/L
Recommendation regarding use of Abx	Cessation of Abx strongly encouraged	Cessation of Abx encouraged	Cessation of Abx <u>encouraged</u> discouraged	Cessation of Abx strongly encouraged_
Overruling the algorithm	Consider continuatio clinically unstable	n of Abx if patients are		
Follow-up/other comments	Clinical reevaluation	as appropriate	Consider treatment f level does not decrea	o have failed if PCT ase adequately

Prognosis

In relation to 90-day mortality among critically ill septic patients

- PCT level 1-5 ųg/L correlates with mortality of 11%
- 51-100 ųg/L -> 42%

Curr Opin Crit Care 13:578-585

Neutropenic febrile patients

- N=158
 - At a PCT cut-off of 1 ng/ml, sensitivity & specificity for bacteremia is 44.2% & 64.3%, respectively

Clinical Microbiology and Infection, Volume 10 Number 7, July 2004

	Bacteraemia	Localised bacterial infection	Se vere sepsis	Clinically localised infection	Systemic mycosis	Fever of unknown origin
Number of patients	52 (32.1%)	14 (8.8%)	12(7.6%)	20 (12.7%)	5 (3.1%)	55 (34.0%)
Age in years (mean ± SD)	50.4 ± 18.2	53.3 ± 20.5	53.6 ± 15.0	52.3 ± 19.6	50.0 ± 20.9	49.1 ± 19.3
Male:female ratio	22:30	8:6	8:4	9:11	4:1	39:16
Underlying malignancy (number of patients)						
AML	32	5	7	11	2	30
NHL	7	4	2	2	-	11
ALL	11	3	1	4	2	11
Other	2	2	2	3	1	3
Underlying infection						
Primary bacteraemia	31	-	-	-	1	
UTI	1	7	3	-	-	
LRTI	3	3	5	9	3	
Central venous catheter	17	1	1	1	-	
Other	-	3	3	10	1	
Isolated pathogen						
CNS	26	1				
Streptoaccus spp.	5	1				
Escherichia coli	6	7				
Pseudomonas æruginosa	3	-				
Klebsiella pneumoniae	2	2				
Aspergillus spp.	-	-			4	
Other	10	1	3		1	

Category of infection

AML, acute myelogenous leukaemia; NHL, non-Hodgkin's lymphoma; ALL, acute lymphoblastic leukaemia; LRTI, lower respiratory tract infection; UTI, urinary tract infection; CNS, coagulase-negative staphylococci.

Advent of fever	Mean (+/- SE) PCT level (ng/ml)
1 st	1.17+/- 0.44
2 nd	0.42 +/- 0.19
3 rd	0.86 +/- 0.36
4 th	0.39 +/- 0.18

	Mean (± SE) PCT level (ng/mL)				
	Bacteraemia	Localised bacterial infection	Severe sepsis	Clinically localised infection	Fever of unknown origin
Afebrile neutropenia Advent of fever	0.85 ± 0.37	0.36 ± 0.10	0.47 ± 0.12	0.24 ± 0.02	0.59 ± 0.17
1st day	$2.98 \pm 1.03^{a,b}$	$0.98 \pm 0.24^{\circ}$	$14.54 \pm 5.05^{d_{\phi}}$	0.87 ± 0.23^{g}	1.11 ± 0.27
2nd day	$2.33 \pm 0.54^{a,b}$	$0.74 \pm 0.17^{\circ}$	14.48 ± 6.08^{df}	1.99 ± 1.59^{8}	0.91 ± 0.32
3rd day	$1.57 \pm 0.37^{a,b}$	$0.81 \pm 0.34^{\circ}$	12.76 ± 6.15^{df}	1.02 ± 0.31^{g}	1.14 ± 0.49
4th day	$1.04 \pm 0.26^{a,b}$	$0.53 \pm 0.17^{\circ}$	8.91 ± 2.31^{dg}	0.47 ± 0.15^8	1.17 ± 0.52
Afebrile	1.30 ± 0.37	0.39 ± 0.20	8.67 ± 5.65	0.53 ± 0.15	0.72 ± 0.16

Table 2. Daily follow-up of procalcitonin (PCT) levels of patients enrolled in the study, correlated with the category of infection

^ap NS (non-significant) when comparing the PCT levels of patients with bacteraemia to those of patients with fever of unknown origin (FUO).

"p NS when comparing the PCT levels of patients with bacteraemia to those of patients with localised bacterial infections.

^cp NS when comparing the PCT levels of patients with localised bacterial infections to those of patients with FUO. ^dp < 0.0001 when comparing the PCT levels of patients with severe sepsis to those of patients with localised infection.

"p 0.001 or "p < 0.0001 when comparing the PCT levels of patients with severe sepsis to those of patients with FUO

⁸p NS when comparing the PCT levels of patients with clinically localised infections to those of patients with FUO.

Table 3. Daily follow-up of C-reactive protein (CRP) levels of patients enrolled in the study, correlated with the category of infection

Survived 9.79 +/- 1.29 ng/mL Died 20.45 +/- 4.48ng/mL (p<0.0001)

	Bacteraemia	Localised bacterial infection	Severe sepsis	Clinically localised infection	Fever of unknown origin
Afebrile neutropenia	54.8 ± 20.9	50.6 ± 39.9	96.3 ± 26.9	24.0 ± 23.2	29.6 ± 8.2
Advent of fever					
1st day	89.7 ± 19.2 ^{a,b}	$94.9 \pm 52.0^{\circ}$	$228.6 \pm 28.5^{d,f}$	51.1 ± 21.4^{1}	82.5 ± 17.9
2nd day	$123.9 \pm 12.4^{a,b}$	$90.6 \pm 35.2^{\circ}$	214.2 ± 28.0 % g	129.0 ± 7.0^{1}	76.1 ± 15.6
3rd day	$123.8 \pm 13.1^{a,b}$	$90.1 \pm 34.5^{\circ}$	$205.0 \pm 51.6^{\circ,h}$	102.0 ± 9.3^{11}	87.3 ± 16.9
4th day	$118.5 \pm 26.5^{a,b}$	$166.3 \pm 69.9^{\circ}$	$74.0 \pm 4.0^{\circ h}$	98.0 ± 15.0^{1}	82.5 ± 20.0
Afebrile	77.7 ± 16.9	122.6 ± 33.9	86.7 ± 50.6	146.8 ± 53.2	53.2 ± 11.6

^ap NS (non-significant) when comparing the CRP levels of patients with bacteraemia to those of patients with fever of unknown origin (FUO).

^bp NS when comparing the CRP levels of patients with bacteraemia to those of patients with localised bacterial infections.

^cp NS when comparing the CRP levels of patients with localised bacterial infections to those of patients with FUO. ^dp 0.005 or ^eNS when comparing the CRP levels of patients with severe sepsis to those of patients with localised infection.

⁴p 0.039, ⁸0.001 or ^bNS when comparing the CRP levels of patients with severe sepsis to those of patients with FUO.
⁴p NS when comparing the CRP levels of patients with clinically localised bacterial to those of patients with FUO.

Bacteremia

Table 2 Diagnostic values in diagnosing bacteremia.					
EngelAuthor	Cut-off value	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
Engel et al. [26]	PCT: 0.5 (ng/ml)	73	86	73	86
Giamarellos-Bourboulis et al. [40]	PCT: 1.0 (ng/ml)	78.6	63.6	84.6	-
Hambach et al. [27]	PCT: 1 (ng/ml)	70	61	54	76
	CRP: > 100 (mg/l)	83	61	58	85
von Lilienfeld-Toal et al. [41]	PCT: 0.62 (ng/ml)	72	77	62	84
	IL-6: 297 (pg/ml)	72	62	50	70
Persson et al. [35]	PCT: 1.3 (ng/ml)	79	87	63	94
	CRP: 143 (mg/l)	58	82	48	88
	IL-6: 71 (pg/ml)	68	72	41	89
Giamarellou et al. [30]	PCT: 1.0 (ng/ml)	44.2	64.3	82.1	18.8
	CRP: > 3.2 (mg/l)	34.6	21.4	62.1	8.3
Ruokonen et al. [31]	PCT: 0.5 (ng/ml)	54.5	88.2	-	-
Kitanovski et al. [42]	PCT > 1.04 (ng/ml)	87.5	80.8	58.3	95.5
	CRP > 124 (mg/l)	75	86.3	63.2	91.7
	IL-6 > 85.5 (pg/ml)	93.6	68.6	48.4	97.2
Secmeer et al. [44]	PCT: 0.4 (ng/ml)	33.3	92	50	92
	CRP: 50 (mg/l)	66.7	46.6	12	92

PCT: procalcitonin; CRP: C-reactive protein; IL-6: interleukin-6; PPV: positive predictive value; NPV: negative predictive value

Fig. 1. Distribution of concentrations of procalcitonin at the time of fever manifestation among patients with bacteraemia caused by coagulase-negative staphylococci, other Gram-positive cocci and Gram-negative bacteria.

Single vs serial measurementsType of organisms

Fungal infections Normal PCT levels at the onset with subsequent increases in patients with an unfavorable course

40

20

Fever (Temperature > 38 °C) PCT > 500 pg/ml

April 2011 | Volume 6 | Issue 4 | e18886

Figure 4. PCT kinetics in persistent neutropenic fever during more th point are shown.

20

PLoS ONE

15

10

Days

PCT in neutropenia

- 0.5 1 ng/ml : local or uncomplicated systemic infections
- 1-2 ng/ml bacteremia or severe fungal infection
- >2 ng/ml severe sepsis and septic shock
- During early phase of fever (1st 24 h) normal values may be reported
- Coagulase negative Staphylococci bacteremia may cause no increase in PCT
- Sensitivity at most 88% for bacteremic infection

PCT in autoimmune patients?

- Not enough data
- Conflicting results in the literature
- No correlation between PCT & disease activity;
- NSAIDs/steroid had no impact on PCT levels
- Different cut-off relating to different diseases entities?

Table 1 Differential diagnosis of non-infectious febrile diseases and relative values of CRP and PCT during steady state, exacerbation of underlying disease and bacterial infection (no change from baseline indicated by "=", relative elevation from baseline indicated by "↑" or "↑↑", insufficient data indicated by "?")

	Steady state		Exacerbation		Bact. infection	
	CRP	РСТ	CRP	PCT	CRP	PCT
Auto-immune/systemic						
• RA	-	-	t	-	11	11
SLE	-	-	=/ ↑	-	tt	11
 Arteriitis temporalis 	1/11	-	n/a	n/a	n/a	n/a
 Vasculitis other 	=/↑	-	=/ ↑↑	-	<u>†/††</u>	1/11
 Sarcoidosis 	=/↑	??	=/ ↑	??	1/11	??
 Behcet's 	-	-	1	-	<u>†/ ††</u>	<u>†/††</u>
Auto-inflammatory						
• FMF	-	-	11	=/↑	1/11	1/11
TRAPS/ HIDS	-	??	tt	??	72	??
 Still's disease 	-	-	11	11	<u>†/ ††</u>	<u>†/</u> ††
IBD				\mathbf{O}		
 Crohn's disease 	-	-	<u>†/ ††</u>	-	1/11	1/11
 Colitis ulcerosa 	-	-	1/11	-	1/11	†/††
Malignancy	=/††	-	n/a	n/a	=/ ††	1/11
Tissue loss/ischemia	??	??	72	??	77	??
Endocrine	??	??	??	??	??	??

Journal of Infection (2010) 60, 409-416

Adult-onset Still's disease -> elevated TNF α, higher cutoff 1.4 ng/ml

Neonates

- Physiological postnatal increase of serum PCT in healthy term & preterm neonates, with peak values at 24 h of age
- Meta-analysis 16 studies (1959 neonates) pooled sensitivity 81% specificity 79% for neonatal sepsis

Table 3

PCT reference ranges for neonates of o – 48 hours of age (including 95% of all measurements)

Age in hours	PCT[µg/L]
0-6	2
6-12	8
12-18	15
18-30	21
30-36	15
36-42	8
42-48	2

PCT Local experience

Enzyme linked fluorescent immunoassay (ELFA)

- The reaction occurs within the interior of the solid phase receptade (SPR) whereby anti-calcitonin antibodies and conjugate form a sandwich.
- 4-MUP is cycled into SPR and conjugate enzyme catalyses the hydrolysis of the substrate into 4-Methyl-umbelliferone which is measured at 450nm.
- 20 minute incubation time
- Measurement range 0.09 200 µg/L
- \$200-300 per test
- Review period (4/8/2010 26/5/2011) N=260

Conclusion

- PCT not sensitive enough to rule out bacterial infection in all setting
- Reassessment in cases in which antibiotics are withheld to ensure the clinical condition improves spontaneously
- Kinetics maybe more helpful to shorten antibiotics duration
- Supplement but not supplant clinical impressions
- Need to consider the cost-effectiveness

The End.

Questions?